
	 	 	
	

	 	 	
	

Supplementary Discussion 
 

Submitting Data to movement.openworm.org 

The OpenWorm movement 
database is intended to be a 
growing resource to compile and 
compare behavior data contributed 
by the community. Despite the 
variety of behavioral experiments, 
the WCON format enables multiple 
labs to contribute data in a form 
that is easily validated and from 
which standard behavioral features 
can be derived. To make WCON 
easier to work with we have made a 
web browser-based viewer that 
checks that a WCON file has the 
correct format, renders the data as 
a video, and displays the metadata 
and units in a table (Fig. S1). Once 
data have been validated using 
either the viewer or one of the 
WCON readers on the Worm 
tracker Commons project page, 
they can be submitted through a 
web form on the movement 
database site. Submitted data will 
be reviewed manually to ensure 
they contain worm behavior data 
and analyzed to extract the same 
features used to search the 
movement database. Finally, the 
WCON and feature data will be 
uploaded to the OpenWorm Movement Database community on Zenodo.org for long term 
storage and citability. 

To maximize comparability between submitted data and the existing data on 
http://movement.openworm.org/ we recommend the use of the same protocol that was used to 
collect the original data1.  However, we recognize that experiments with different goals may 
require different protocols and emphasize that we accept data collected using other protocols. 

 

Tierpsy Tracker Description 

Tierpsy Tracker is a multi-worm tracker written primarily in Python that is capable of extracting 
postural information. Tierpsy Tracker was designed to occupy a niche that was not filled by 

Fig. S1: WCON viewer. Screenshot showing a 
validated WCON file being viewed in a web browser. 
The video can be played and paused, scrolled 
through using the slider, and zoomed. Below the 
video, the browser displays the metadata and units in 
a table. 



	 	 	
	

	 	 	
	

existing worm trackers (see Comparison with other trackers below for details).  It extracts the 
same high-dimensional feature set as WormTracker 2.0 so that its output can be directly 
compared to the growing worm behavior database described here. It is fully open source, 
including all dependencies, so no commercial software (such as MATLAB or Labview) is 
required to inspect it, run it, or modify it, while executable versions are provided for both 
Windows and Mac OSX for those who want to use the software without dealing with the source 
code.  It has the following main features: 

• Following segmentation, it saves output videos in a compressed HDF5 format that 
preserves full pixel information around worms losslessly while zeroing background pixels 
(see Figure 1 in main text). To monitor slowly changing background features such as 
food depletion, full resolution images can be saved with adjustable frequency. The HDF5 
files can be read using many languages (including MATLAB and Python) and support 
precise frame indexing.  They also include experiment and analysis metadata. 

• It supports a variety of video formats and experimental setups (see Sample Analysis 
below). 

• It provides graphical user interfaces to calibrate the parameters for a new experimental 
setup, review the segmentation results, and manually join trajectory fragments if desired. 

• It can analyze large data sets from screening projects consisting of thousands of videos 
by taking advantage of multicore processors to implement ‘embarrassingly parallel’ 
processing of multiple videos. This can be done using a simple batch processing 
function in the graphical user interface or from the command line. 

• Its processing pipeline is modular so that analysis steps can be skipped or added 
depending on the analysis type and it records the provenance of output files (including 
software version and analysis parameters) to improve reproducibility.  

• It is able to copy files from and to temporary directories prior to and after the analysis in 
order to deal with unstable remote connections. 

Comparison with Worm Tracker 2.0 

Tierpsy Tracker is at its core a multi-worm generalization of WormTracker 2.01, a single-worm 
tracker, although it should be emphasized that the underlying software has been ported to 
Python from MATLAB and completely re-designed. Tierpsy Tracker is fully compatible with 
videos produced by the WormTracker 2.0 hardware. The skeletonization, stage alignment, and 
feature calculation algorithms are Python ports of the original MATLAB algorithms. When 
WormTracker 2.0 files are analyzed in Tierpsy Tracker, the HDF5 output files include stage 
movement and experiment information along with the segmented video, reducing the risk of 
misplacing or losing this essential metadata.  

Tierpsy Tracker uses a locally calculated threshold as opposed to the global threshold used in 
WormTracker 2.0, which makes it more robust to non-uniform lighting. However, on the high-
contrast videos produced typically produced by WormTracker 2.0, the results are similar (see 
Fig. S2A). In cases where there are substantial differences between the two trackers, these are 
most-often caused by head-tail identification errors that are corrected by Tierpsy Tracker’s more 
accurate head tail detection algorithm (see "Head/tail identification").  We measured the  



	 	 	
	

	 	 	
	

 

Fig. S2: Benchmark between Tierpsy Tracker and Worm Tracker 2.0. A. Tracking results 
from video of a single L4 N2 analyzed with both Tierpsy Tracker (orange) and Worm Tracker 2.0 
(green). Both trackers produce almost identical results except in a small segment where there 
was a head-tail identification error by Worm Tracker 2.0 (frames 5564 to 5678). The Tierpsy 
Tracker skeleton coordinates were rotated to align them with the Worm Tracker results prior 
plotting. This is because the coordinate system in Tierpsy matches the camera orientation, while 
in WT2.0, it matches the stage position. Left top, Root Square Mean Error (RMSE) between the 
skeletons output by each tracker. Left centre and bottom, y and x head coordinates over time. 
Right, midbody trajectory in space. Inset, example of the skeletonization results at frame 2500. 
Similar results were obtained in 6 x 103 experiments each on a different individual worm on a 
different plate. B. Left, Cumulative distribution of the total fraction of skeletons (1.8 x 108 across 
9343 videos, each taken from a different individual worm on an independent plate) with a given 
RMSE between the results of Worm Tracker 2.0 and Tierpsy Tracker. RMSE values are 
normalized by the worm length (L). The shaded blue region marks the threshold of 1/48 ≈ 0.021 
and contains 99.2% of all the frames in RMSEswitch. The inset shows an example of WT2.0 (red) 
and Tierpsy (cyan) with a RMSE of 0.02, which is at the border of the shaded region. 99.2% of 
skeleton agreements are as good or better than this. Right, videos sorted by the fraction of 
RMSE/L less than 1/48. See main text for more information. 



	 	 	
	

	 	 	
	

 

head/tail orientation accuracy by randomly selecting 100 videos from the database and 
manually assessing if the orientation was correct in each frame that was successfully 
skeletonized. In a random subset of 100 videos, containing 1.9 x 106 frames that were 
successfully skeletonized in both Tierpsy and WT2.0, we confirmed by manual inspection that 
Tierpsy made a mistake in only 216 of the frames (0.01%) while WormTracker2.0 made a 
mistake in 87,751 of the frames (4.49%). To further test the accuracy, we measure the RMSE 
between skeletons produced by WormTracker 2.0 and Tierpsy Tracker in 1.8 x 108 frames 
across 9343 videos (each video a replicate with one worm on a separate plate). We consider 
that two skeletons are in agreement if the RMSE between them is less than 1/48 the length of 
the Tierpsy Tracker skeleton which is equivalent to a single segment in the skeleton. We found 
that 96.19% of the skeletons are in agreement, and that 8410/9343 of the videos have 90% or 
more of their skeletons in agreement (Fig. S2). Head-tail errors will result in a large RMSE for 
otherwise well-skeletonized worms so we switched the orientation of the WormTracker 2.0 
skeletons and re-calculated the RMSE. If we use the lower of the two RMSE values between 
switched or not switched, we find that 99.20% of the skeletons are in agreement, and that 
9208/9343 of the videos have 90% or more of their skeletons in agreement. 

Comparison with other trackers 

Several worm trackers have been previously described1–20. Most of the trackers either extract 
detailed postural information of one worm at a time or track multiple worms but extract only 
coarser-grained features such as centroid speed or orientation. Collecting postural information 
in addition to overall motion can be useful for phenotyping1,13,21–23, while tracking multiple worms 
can increase throughput and make it possible to study worm-worm interactions. Tierpsy Tracker 
is one of a relatively smaller number of trackers that extracts postural information from frames 
containing multiple worms and is the only tracker that compresses videos by background 
subtraction while maintaining uncompressed pixel information around tracked objects. This is an 
important feature because it makes Tierpsy Tracker compatible with large scale screens while 
maintaining enough information to re-analyze datasets using algorithms that depend on pixel 
information (e.g. egg laying detection, texture-based analyses, idTracker24, etc.). 

There are two other published open source trackers that track multiple worms and extract 
detailed postural information: the Multi-Worm Tracker8 and CeLeST6. The Multi-Worm Tracker 
can be used for high-throughput screens but compresses data by saving worm positions and 
outlines while discarding all pixel information.  CeLeST extracts features from videos but does 
not compress videos. Furthermore, Tierpsy Tracker is fully open source, including its 
dependencies whereas the Multi-Worm Tracker and CeLEST use commercial software for at 
least part of their pipelines (the Multi-Worm Tracker requires a Labview runtime license for its 
user interface and CeLEST is written in MATLAB). Tierpsy Tracker occupies an intermediate 
niche between these two other trackers in terms of processing speed and ease of use. It is 
slower than the Multi-Worm Tracker but includes graphical user interfaces for parameter tuning 
and batch processing making it more accessible for users unfamiliar with running software from 
the command line (although Tierpsy Tracker can also be run from the command line). 
Compared to CeLeST, Tierpsy tracker extracts a wider range of features (provided sufficient 
video resolution, Fig. S3) and includes simple parallelization without user intervention, which is 
convenient for running on larger datasets.  Tierpsy tracker is also faster on a per-file basis: on a 



	 	 	
	

	 	 	
	

MacBook Pro (2.7GHz Core Quad, 16GB) the Dataset S1 in Restif et al.6 was analyzed in 3 
minutes using CeLEST (MATLAB 2014b) and 1.5 minutes using Tierpsy.  

 
Fig. S3: Effect of resolution on tracking. To simulate the effect of pixel size in the tracking 
analysis we reduced the size of a video of an N2 adult recorded using Worm Tracker 2.0. A. 
Example of a frame at the different image sizes tested, the skeletonization results are overlaid 
(red). We tested image sizes of 680x480, 213x160, 91x68 and 45x34, this is the equivalent of 
3.57, 10.73, 25.12 and 50.80 μm/pixel respectively. The skeletonization algorithm fails at 50.8 
μm/pixel. One ten randomly chosen N2 videos, the skeletonization algorithm failed on the 
following fraction of frames (mean ± standard deviation): 0.09 ± 0.05 at 3.57 μm/pixel, 0.09 ± 
0.05 at 10.73 μm/pixel, 0.16 ± 0.06 at 25.12 μm/pixel, and 1 ± 0 at 50.80 μm/pixel.  B. Time 
series plots (left) and histograms (right) of a few selected features. Most of the features 
calculated produce similar results at different resolutions, except for features related with 
morphology (length, width, area) or to the head and the tail (foraging, angular speed) which 
show an increase in noise with reducing resolution. Similar results were observed for ten 
randomly chosen N2 videos. 



	 	 	
	

	 	 	
	

 

 

 

Video compression in large fields of view 

An uncompressed video stream from a four-megapixel camera recording at 25fps will fill a 2TB 
disk in less than 3hrs of recording. Some form of compression is therefore an important 
component of a high-resolution tracker intended for even moderate throughput experiments. 
The most common approach is to use a video format that uses lossy compression to manage 
file sizes while maintaining visual features tuned to human vision (although not necessarily 
optimal for computer vision25) but this introduces compression artefacts. 

A more extreme approach is adopted by the Multi-Worm tracker8, which saves a compact set of 
features including worm contour and position. This greatly reduces file size, but it comes at the 
expense of losing all the video textural information, precluding re-analysis with improved 
computer vision methods. Tierpsy Tracker uses an intermediate approach by only keeping the 
pixels around candidate worm regions and setting the rest of the image to zero (see 
Compression/object detection). These segmented images are highly compressible using 
standard lossless compression algorithms thus reducing file sizes while maintaining full 
resolution information around each worm so that tracking and analysis can be repeated as 
improved algorithms are developed. Tierpsy Tracker also uses pixel intensities in its improved 
head-tail detection algorithm (see "Head/tail identification" and Fig. S4).   

Although segmentation followed by lossless compression is our currently favoured approach, 
Tierpsy Tracker can use video codecs supported by the FFmpeg library 
(https://www.ffmpeg.org/) via OpenCV (https://opencv.org/), as well as setups where each frame 
is saved as an individual image. Tierpsy Tracker also makes it straightforward to save only 
worm contour, skeleton, and feature data because it creates a parallel directory structure for 
analysis results. If tracking results are acceptable, the original and/or compressed videos can 
simply be deleted to mimic the online behaviour of the Multi-Worm Tracker. 

Compression/object detection algorithm 

The aim of the initial segmentation is to identify regions in the image that are likely to contain 
worms and to compress the data by only keeping the pixels around these candidate regions. 
The worms are assumed to be dark objects on a light background or light objects on a dark 
background. The detection algorithm uses an adaptive mean thresholding to account for local 
variations of the image intensity, filters the resulting blobs by their size, and uses morphological 
operations to clean the resulting mask and save the surrounding pixels. Each frame is then 
masked and saved into an HDF5 file using a compressed 3D array (frame * image width * 
image height).  The HDF5 format is used due to its capacity to deal with arbitrarily large files, 
built-in compression filters, and its support of a large variety of software platforms. 

Instead of calculating a new mask for each frame, we can save computation time by collecting a 
stack of frames and calculating the mask on the z-projection (minimum for a light background 
and maximum for a dark background). Using this approach together with the faster lz4 
compression, a C++ implementation of the algorithm was implemented in our setup to run in 
real time (25 fps).  



	 	 	
	

	 	 	
	

 

 
Fig. S4: Head tail correction using intensity. A. Process of interpolation along the segments 
perpendicular to the worm skeletons to obtain the intensity along a straightened worm26. B. 
Example of different intensity profiles along the worm skeletons for different frames. The blue 
line corresponds to the median values among all the intensity profiles (global intensity profile). 
C. Kymograph of the intensity profile along the skeleton. The position of each the intensity 
profile shown in panel B is marked with the corresponding colour line. D. L1-norm between the 
difference of each frame intensity profile and the global intensity profile (original, blue or 
inverted, orange). The region corresponding to a wrongly oriented skeleton block (pink shade) 
has a smaller value in the inverted than in the original L1-norms. 

 

Head/tail identification algorithm 

The output of the skeletonization algorithm does not determine which end of the curve is the 
head and which one the tail. To orient the skeletons, we use the following algorithm which 
depends in part on having the high-resolution textural information in Tierpsy’s HDF5 file format: 

1) During the skeletonization step we attempt to keep the same orientation between 
consecutive skeletons by choosing the orientation that minimizes the L2-norm of the 
current and previous skeletons. For this step, the orientation does not have to be correct 
(head and tail could be misplaced), we are only interested in keeping a spatial 
coherence between consecutive frames. This approach will maintain the same  



	 	 	
	

	 	 	
	

2) orientation even if the skeletonization fails for few frames, as long as the time gap 
between consecutive skeletons is small relatively to the worm displacement. 

3) We divided the movie into blocks of skeletons with the same orientation. A skeleton is 
assigned to a given block if there is not a gap larger than 0.5s with the previous skeleton 
in the block. For each block, we estimate the motility of each extreme in the skeleton as 
the rolling standard deviation (window 5s) of the angles between each end-point and a 
point at ~1/10 of the worm length from it. The end corresponding to the head is assumed 
to have a larger motility than the end corresponding to the tail. This step typically orients 
most of the skeletons correctly, but it will fail if the tail moves more in that particular 
block, which occurs most often in small blocks. 

4) To correct for mistakes in the previous step we make use of the pixel intensities along 
the worms. We interpolate along the segments perpendicular to the worm skeletons to 
obtain the profile intensity along a straightened worm26 (Fig. S4A). If the trajectories are 
large enough most of the skeletons in the previous step should have been oriented 
correctly, therefore if we get the median value of all the intensities we can determine a 
global intensity profile for each worm with the correct orientation (Fig. S4B). Blocks of 
skeletons with incorrect orientation will show a switched intensity profile (Fig. S4C). We 
detect these blocks by calculating the L1-norm of the difference between each frame 
profile and the global profile in both the correct orientation and with a switched 
orientation. If the L1-norm of the switched profile is smaller than that of the correct 
orientation, it is likely that the corresponding skeleton needs to be corrected. 

5) The previous step will typically orient all the skeletons with the same orientation, but this 
orientation could be wrong in rare cases where most of the head/tail blocks were 
assigned incorrectly in step 2).  As a final refinement step, we recalculate the motility of 
each extreme in the skeleton similar to 2) but using the whole video as a single block. In 
cases where the worm is mostly immobile, i.e. the total head displacement range is less 
than half the worm length, we increase the rolling window from 5s to 250s in order to 
increase the sensitivity of the analysis. 

Sample analysis 

To demonstrate the usefulness of postural features in a multi-worm tracker, we used Tierpsy 
Tracker to extract features from videos of twelve wild isolated strains of C. elegans (the CeNDR 
divergent set27) and trained a classifier to distinguish them. We collected between 25 and 28 
videos per strain. Each video is a replicate on an independent plate with 5-10 worms per plate.  
We pooled the time series and event data of all the worms in a given video and calculated the 
726 morphological and behavioral features described in Yemini et al.21 We remove features 
where more than 5% of the videos have NaN (Not a Number) values leaving 681 features.  We 
imputed any remaining NaN values with the global average (i.e. the average of that feature 
across all strains) and z-normalized each feature by subtracting the mean and dividing by its 
standard deviation. 

To classify the strains, we implemented a multinomial logistic regression as a Softmax layer 
using PyTorch. We trained for 500 epochs using a mini-batch size of 50 and stochastic gradient 
descent with learning rate 0.001 and momentum 0.9. Using a 6-fold stratified cross validation 
we obtained an accuracy 87.8 ± 4.0% (mean ± standard deviation) using all the 681 features 
selected as described above. To illustrate the importance of extracting high-resolution postural 
information, we trained a separate classifier on the same data using only features that could be 



	 	 	
	

	 	 	
	

extracted using a lower resolution multi-worm tracker without detailed postural data. These 
features are derivate from the midbody speed (linear and angular) and crawling (frequency and 
amplitude), motion events (e.g. turning rate, forward motion time, average displacement when 
moving backwards), and the path range and curvature. We selected in total 133 features and 
obtain a lower accuracy of 57.6 ± 4.5% (mean ± standard deviation). 

Sample preparation: The protocol for tracking is similar to that described in Yemini et al. (2013). 
L4 larvae are picked onto a plate with OP50 and allowed to grow overnight to adulthood. Before 
imaging, 5 or 10 young adults are picked onto a 35 mm plate and allowed to habituate for 30 
minutes before recording. Each recording lasts for 15 minutes. Imaging plates contain 
nematode growth medium (NGM) with low peptone that have been seeded the day before 75μL 
of OP50. 

  



	 	 	
	

	 	 	
	

 

Fig. S5: Classification of wild isolates. A. Left, original image. Right, results after the applying 
the compression mask. Each square corresponds to an identified worm. The worm in the red 
square is shown at a higher zoom in the inlets in each panel. B. Example of time series of two 
selected postural features. Similar results were obtained for 2268 worms recorded on 189 
independent plates. C. Confusion matrix of the classifier using 10-fold cross validation on 
features related with motion that could be extracted using low resolution multi-worm tracking 
(left) or using all the features we calculate using both motion and postural data (right). 



	 	 	
	

	 	 	
	

 

Examples of Tierpsy Tracker analysis using different experimental setups 

A useful characteristic of Tierpsy Tracker is that it can deal with data from a large variety of 
experimental setups. We provide the following examples using previously published data: 

• Fig. S6 Swimming C. elegans. 
• Fig. S7 Drosophila larvae28,29. 
• Fig. S8 Dataset S1 in Restif et al.6 
• Fig. S9 Example from pycelegans-1.07. 
• Fig. S10 Video S6 in Chagas et al.30 

 

 

 

Fig. S6: Swimming C. elegans. Top left, original image. Top right, results after applying the 
compression mask. Each square corresponds to an identified worm. Bottom left, example time 
series of two selected postural features. Bottom right, skeleton and contour of the worm inside 
the red square in the top right panel. The head is indicated with the red asterisk. Similar results 
were obtained for 50 worms on 10 independent plates. 

 



	 	 	
	

	 	 	
	

 

 

Fig. S7: Videos of maggots at different resolutions. Data from ref28 (top row) and ref29 
(centre and bottom row). The raw videos generously provided by Alex Gomez-Marin. Data from 
left to right: original image; results after applying the compression mask (each square 
corresponds to an identified maggot); skeleton and contour of a selected maggot; example time 
series of two selected postural features.  

 

  



	 	 	
	

	 	 	
	

 

Fig. S8: Dataset S1 in Restif et al.6 Top left, original image. Top right, results after the applying 
the compression mask. Each square corresponds to an identified worm. Bottom left, example 
time series of two selected postural features. Bottom right, skeleton and contour of the worm 
inside the red square in the top right panel. The head is indicated with the red asterisk. 

 



	 	 	
	

	 	 	
	

 

Fig. S9: Example from pycelegans-1.07. Data obtained from: https://github.com/david-
biron/pycelegans-1.0/tree/master/example/input. Top, original image. Middle, results after the 
applying the compression mask. Each square corresponds to an identified worm. Bottom left, 
example time series of two selected postural features. Bottom right, skeleton and contour of the 
worm inside the red square in the middle panel. The head is indicated with the red asterisk. 

 

 

 



	 	 	
	

	 	 	
	

 

Fig. S10: Video S6 in Chagas et al.30 Top left, original image. Top right, results after the 
applying the compression mask. Each square corresponds to an identified worm. Bottom left, 
example time series of two selected postural features. Bottom right, skeleton and contour of the 
worm inside the red square in the top right panel. The head is indicated with the red asterisk. 
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